3.3

CONVERSION PROBLEMS

Section Review

Objectives

- Construct conversion factors from equivalent measurements
- Apply the techniques of dimensional analysis to a variety of conversion problems
- Solve problems by breaking the solution into steps
- Convert complex units, using dimensional analysis

Vocabulary

- conversion factor
- dimensional analysis

Part A Completion

Use this completion exercise to check your understanding of the concepts and terms that are introduced in this section. Each blank can be completed with a term, short phrase, or number.

When the ___9 cancel, you should be left with the unit of the ___10 __.

Whenever two measurements are equal, or equivalent,	1
a ratio of these two measurements will equal $\underline{\hspace{1cm}}$.	2
A ratio of equivalent measurements is called a2 When	3
a measurement is multiplied by a conversion factor, the value	4
of the measurement3	5
In4, the units that are a part of the measurements	6
are used to help solve the problem. The form of the conversion	7
factor that is used is the one in which the unit of the5 is	8
in the denominator.	9
Many complex word problems can be solved by breaking the	10
solution into6 When converting between units, it is often	
necessary to use more than one	
In doing multistep problems, it is important to check that the	
numerator and8 of each conversion factor are equivalent.	

Name		Date	Class
Part B T	rue-False		
Classify each	of these statements as always	true, AT; sometimes true, ST; or r	ıever true, NT.
11.	The units of a conversion fac	ctor must cancel.	
12.	The conversion factor for chequipment $\frac{1 \text{ g}}{1000 \text{ mg}}$.	anging between grams and mill	igrams is
13.	Multiple conversion factors oproblems.	can be used to solve complex co	onversion
14.	If density = mass/volume, the	nen mass = density/volume.	
15.	When two measurements are	e equal, a ratio of these two mea	asurements

Part C Questions and Problems

Answer the following in the space provided.

will equal unity.

- **16.** Make the following conversions using Tables 3.1 and 3.2. Write your answers in scientific notation.
 - a. 125 g to kilograms
 - **b.** 0.12 L to mL
- 17. If 1500 white blood cells are lined up side by side, they would form a row 1.0 inch long. What is the average diameter in micrometers of a single white blood cell? (1 inch = 2.54 cm)

18. A radio wave travels 186,000 miles per second. How many kilometers will the wave travel in one microsecond? (1 mile = 1.61 km)